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Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neuro-

degeneration. The mechanisms of tissue injury are poorly understood, but recent data suggest that mitochondrial injury may

play an important role in this process. Mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, and we

recently provided evidence for oxidative damage of oligodendrocytes and dystrophic axons in early stages of active multiple

sclerosis lesions. In this study, we identified potential sources of reactive oxygen and nitrogen species through gene expression

in carefully staged and dissected lesion areas and by immunohistochemical analysis of protein expression. Genome-wide

microarrays confirmed mitochondrial injury in active multiple sclerosis lesions, which may serve as an important source of

reactive oxygen species. In addition, we found differences in the gene expression levels of various nicotinamide adenine

dinucleotide phosphate oxidase subunits between initial multiple sclerosis lesions and control white matter. These results

were confirmed at the protein level by means of immunohistochemistry, showing upregulation of the subunits gp91phox,

p22phox, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate

oxidase organizer 1 in activated microglia in classical active as well as slowly expanding lesions. The subunits gp91phox and

p22phox were constitutively expressed in microglia and were upregulated in the initial lesion. In contrast, p47phox, nicotina-

mide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 expres-

sion were more restricted to the zone of initial damage or to lesions from patients with acute or early relapsing/remitting

multiple sclerosis. Double labelling showed co-expression of the nicotinamide adenine dinucleotide phosphate oxidase subunits

in activated microglia and infiltrated macrophages, suggesting the assembly of functional complexes. Our data suggest that the

inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in demyelination and

free radical-mediated tissue injury in the pathogenesis of multiple sclerosis.
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Introduction
Multiple sclerosis is a chronic inflammatory disease of the CNS

leading to focal as well as diffuse demyelination and neurodegen-

eration in the CNS (Lassmann et al., 2007). Different mechanisms

might contribute to tissue injury in multiple sclerosis, but one of

the major driving forces was recently suggested to be mitochon-

drial damage and subsequent energy failure (Lu et al., 2000;

Dutta et al., 2006; Mahad et al., 2008a; Trapp and Stys 2009;

Witte et al., 2009, 2010). Mitochondrial injury in active multiple

sclerosis lesions mainly affects complex IV and might explain char-

acteristic pathological features of multiple sclerosis lesions, includ-

ing demyelination and oligodendrocyte apoptosis (Veto et al.,

2010), destruction of small diameter axons (Mahad et al.,

2008b, 2009), neurodegeneration (Campbell et al., 2011), differ-

entiation arrest of oligodendrocyte progenitor cells and remyelina-

tion failure (Ziabreva et al., 2010), as well as astrocyte dysfunction

(Sharma et al., 2010). In vitro data and experimental multiple

sclerosis animal models provide evidence that mitochondrial

injury can be induced by reactive oxygen and nitrogen species

(Bolanos et al., 1997; Higgins et al., 2010; Witte et al., 2010;

Nikić et al., 2011). The mitochondrion itself is not only affected

by reactive oxygen species-induced damage, but is also a potent

source of reactive oxygen species production, as disturbed oxida-

tive phosphorylation leads to increased reactive oxygen species

generation (Murphy, 2009). Reactive oxygen and nitrogen

species-induced damage to biological macromolecules, such as

polyunsaturated fatty acids in membrane lipids, proteins and

DNA/RNA have been described to occur in multiple sclerosis le-

sions (Cross et al., 1998; Liu et al., 2001; Diaz-Sanchez et al.,

2006; van Horssen et al., 2008). In a recent study, we observed

oxidation of DNA in oligodendrocytes, and oxidized lipids in

myelin, oligodendrocytes and axons in association with active de-

myelination and neurodegeneration (Haider et al., 2011).

Active lesions in the relapsing–remitting as well as in the pro-

gressive course are always associated with inflammation (Frischer

et al., 2009), and the extent of lipid and DNA oxidation correlated

significantly with inflammation (Haider et al., 2011). Besides an

unavoidable by-product of cellular respiration, reactive oxygen

species are synthesized by dedicated enzyme systems, including

myeloperoxidase (MPO), xanthine oxidase and nicotinamide ad-

enine dinucleotide phosphate (NADPH) oxidase in activated micro-

glia and macrophages. MPO has been shown to be predominantly

expressed by macrophages and activated microglia within and in

close vicinity of multiple sclerosis plaques in white matter lesions

(Marik et al., 2007; Gray et al., 2008a), as well as in a subtype of

microglia surrounding cortical lesions (Gray et al., 2008b).

Expression of NADPH oxidases, which convert molecular oxygen

to superoxide, has so far not been analysed in multiple sclerosis

lesions.

Hence, the aim of our current project was to identify possible

sources for reactive oxygen species production in relation to

demyelination and neurodegeneration in multiple sclerosis. In a

first step, we studied global changes in the expression of genes

involved in mitochondrial function and oxidative stress through

genome-wide microarray analysis of gene expression in carefully

dissected lesion areas of patients with fulminant acute multiple

sclerosis. Molecules of the NADPH oxidase complexes were

then analysed regarding protein expression by immunocyto-

chemistry in a large set of multiple sclerosis lesions. Our

study suggests that oxidative burst through reactive oxygen

species production by NADPH oxidases is a major driving

force for demyelination and neurodegeneration in multiple scler-

osis lesions.

Materials and methods

Human autopsy tissues
This study was performed on autopsy brains of patients and control

cases from paraffin blocks archived in the Centre of Brain Research,

Medical University of Vienna, Austria and the Department of

Neuropathology, University Medical Centre Amsterdam, The

Netherlands. The multiple sclerosis samples from Vienna (total

n = 30; female to male ratio 19:11; age range 34–84 years) contained

seven cases of Marburg’s type of acute multiple sclerosis, two of them

with Balo type concentric lesions, eight cases of relapsing–remitting

multiple sclerosis, seven cases of secondary progressive multiple scler-

osis and seven cases of primary progressive multiple sclerosis. For one

patient, who showed inactive lesions, the clinical course remained un-

certain. As control, we included autopsy tissues from patients without

neurological disease and without any CNS lesions (n = 18; female to

male ratio 11:7; age range 30–97 years). Detailed clinical data on

these patients have been published recently in our studies on inflam-

mation and oxidative damage in multiple sclerosis (Frischer et al.,

2009; Haider et al., 2011), and our current study has been performed

on the cases and lesions, described in these studies. Furthermore, 7/8

cases of multiple sclerosis with aggressive acute or relapsing disease

course, analysed in our present sample, were also included previously

in our studies on mitochondrial injury (Mahad et al., 2008) and on

initial multiple sclerosis lesions (Marik et al., 2007). The samples from

Amsterdam (total n = 11; female to male ratio 8:3; age range 45–80

years) contained 10 cases of secondary progressive multiple sclerosis

and 1 case of primary progressive multiple sclerosis. Detailed clinical

data on these patients have been recently published (van Horssen

et al., 2010).

For microarray studies, three of the acute multiple sclerosis cases

were selected on the basis of lesion size and activity as well as mes-

senger RNA preservation, assessed by in situ hybridization for proteo-

lipid protein messenger RNA (Fig. 1).
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Whole-genome arrays
Whole-genome arrays were performed on material, micro-dissected

from sections of formaldehyde-fixed paraffin-embedded archival

tissue, cut and mounted onto glass slides. It was performed on ma-

terial from three patients, who died with fulminant acute multiple

sclerosis between 14 days and 4 months after disease onset (Fig. 1).

All three patients showed a pattern of active demyelination, following

pattern III (Luchinetti et al., 2000). From the sections, we dissected

areas of initial lesions (Marik et al., 2007; Lassmann 2011), also

defined as ‘pre-phagocytic’ lesions areas (Barnett and Prineas 2004;

Henderson et al., 2009). These areas showed a moderate T cell infil-

tration, pronounced microglia activation, reduction of myelin staining

intensity, selective loss of myelin-associated glycoprotein and oligo-

dendrocyte apoptosis but no overt demyelination, and most pro-

nounced presence of oxidized lipids and DNA (Marik et al., 2007;

Henderson et al., 2009; Haider et al., 2011). In addition, we dissected

areas of early demyelination, characterized by loss of myelin and infil-

tration with macrophages-containing myelin oligodendrocyte glyco-

protein and proteolipid protein reactive myelin debris [early and late

active lesion areas according to Brück et al. (1995)] and areas from the

normal appearing white matter with moderate microglia activation

only. For comparison, we obtained normal white matter from four

control individuals without brain disease or neuropathologically detect-

able lesions.

After histological characterization, consecutively cut sections of

6–10 mm were mounted on glass slides in RNase-free conditions.

With this archival formaldehyde-fixed paraffin-embedded tissue,

several problems had to be overcome: the time interval between the

initial sample acquisition and fixation was unclear, it was not known

whether the tissue has been adequately cooled before fixation to pre-

vent the action of RNA degrading enzymes, and the tissue has been

fixed with formaldehyde, which induces the formation of methylol

cross-links (von Ahlfen et al., 2007). This makes it essentially impos-

sible to retrieve larger amounts of intact messenger RNA.

To overcome these problems, we performed in situ hybridization as

described (Breitschopf et al., 1992), using a 1.4 kb RNA probe of

proteolipid protein 1 (labelled with digoxigenin) to identify tissue

blocks with good RNA preservation, and we only continued with tis-

sues yielding a strong hybridization signal. From these tissues, un-

stained slides were used to scratch the different lesion areas (Fig. 1)

as described previously (Nicolussi et al., 2009). The scratched material

from each region of interest was collected into separate vials. We

isolated total RNA from this material, using the High Pure FFPE RNA

Micro Kit (Roche) as recommended by the manufacturer. We then

transcribed the messenger RNA fragments contained in the total

RNA pool to complementary DNA, using the Paradise� Reagent

System (Arcturus) according to the instructions of the manufacturer.

This system uses poly-T primers for the reverse transcription from total

RNA to complementary DNA, thereby relying on the presence of the

poly(A) tail on the messenger RNA fragments. The obtained comple-

mentary DNA was amplified by one round of in vitro transcription and

reverse transcription, again using the Paradise Reagent� System as

recommended. Then, we tested the quality of the amplified comple-

mentary DNA and its suitability for array analysis by polymerase chain

reaction. For this purpose, we designed primers specific for the

Figure 1 Acute multiple sclerosis lesions used for gene expression analysis; the structure of the lesions is shown in sections stained with

Luxol fast blue (myelin; a, c and e); the lower panel of figures shows the same lesions, stained for p22phox expression in activated

macrophages and microglia. In the first patient (a and b), the active lesion (black outline) is surrounded by a broad area of microglia

activation with p22phox expression and myelin pallor (red outline; initial lesion), which makes it difficult to see the lesion margin in the

staining for macrophages and microglia. In the normal-appearing white matter (yellow outline), myelin density is normal, but there is still

moderate microglia activation. In the second patient (c and d), the demyelinated lesion core (black outline) shows concentric rings of

preserved myelin. This is surrounded by the initial lesion area with extensive immunoreactivity for p22phox (red outline). The

normal-appearing white matter shows normal myelin density and low expression of macrophage antigens (yellow outline). In the third

patient (e and f) a dense infiltrate of macrophages with p22phox expression is seen in the area of demyelination (active plaque). In the

surrounding white matter, there is little expression of macrophage/microglia antigens. Areas of normal white matter used for gene

expression analysis are shown by the yellow outline. Gene expression for proteins involved in oxidative damage and for mitochondrial

proteins has been analysed separately in the indicated lesion areas. Dis. Dur = disease duration.
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housekeeping gene b-actin (ACTB) in such a way that the binding site

of the forward primer was located in a distance of 472 bases from the

poly(A) tail of the corresponding messenger RNA. Only when the

messenger RNA fragments obtained from the isolation process were

sufficiently long, the forward primer was able to bind and a polymer-

ase chain reaction product was detected (Supplementary Table 1). We

only continued with isolates that fulfilled this quality requirement, and

made a second round of in vitro transcription, again using the

Paradise� Reagent System according to the instructions of the

manufacturer.

The obtained purified antisense RNA was then sent to imaGenes

(imaGenes GmbH www.imagenes-bio.de), where it was labelled with

Cy3 and hybridized to Agilent-014850 Whole-Human Genome

Microarrays 4 � 44 K G4112A, and where the microarray data

images were scanned and analysed using the Agilent Feature

Extraction Software (www.agilent.com/chem/fe). The resulting raw

data were subjected to quantile normalization. We then evaluated

the normalized microarray data based on log2 fold changes in gene

expression between the samples of interest and the controls.

With the workflow described above, our RNA probes had a length

of at least 480 bp. This was a useful size to identify many, but not all

differentially expressed genes. For example, transcripts of p22phox

(CYBA) could be detected: the CYBA-oligomere spotted on the

Agilent array (A_23_P163506) binds in a distance of 407 bp from

the poly(A) tail of the CYBA gene (NM_000101.2). Accordingly, we

were able to obtain corresponding signals on the Agilent microarray.

The situation was different when binding sites of oligomeres are

located outside our RNA fragment size range. For example, the pro-

teolipid protein 1 oligomere spotted on the Agilent array

(A_23_P85201) binds at a distance of 1024 bp from the poly(A) tail

of the proteolipid protein gene (NM_000533.3). Hence, such tran-

scripts could not be detected. The data discussed in this publication

have been deposited in NCBI’s Gene Expression Omnibus and are

accessible through GEO Series accession number GSE32915

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32915).

Neuropathological techniques
Expression of the NADPH oxidase 2 subunits p22phox, gp91phox,

p47phox, NADPH oxidase 1 (NOX1) and NADPH oxidase organizer

1 (NOXO1) in different stages of multiple sclerosis lesions were stu-

died with immunohistochemistry on paraffin sections according to es-

tablished techniques (King et al., 1997; Bauer et al., 2007). A detailed

list of primary antibodies, dilutions and corresponding pre-treatment of

the sections are given in Table 1. Primary antibody binding was visua-

lized with a biotin/avidin/peroxidase method or with alkaline

phosphatase-coupled secondary antibodies (Haider et al., 2011).

Diaminobenzidine and fast blue were used as substrates for visualiza-

tion of peroxidase and alkaline phosphatase, respectively.

Double stainings
The cellular localization of the NADPH oxidase markers as well as the

co-localization of the complex-forming subunits within the same cell

type were examined with double staining with light microscopy

(p22phox, p47phox and NOXO1) and/or fluorescent microscopy

(p22phox, p47phox, gp91phox and NOX1).

All double labelling was performed using primary antibodies from

different species.

The two different primary antibodies were applied together over-

night. The secondary system was chosen in a way that couples one of

the antibodies to a secondary antibody directly conjugated to perox-

idase. The other primary antibody was first bound to a biotinylated

secondary antibody, followed by coupling to avidin-linked alkaline

phosphatase. Alkaline phosphatase was then first visualized by fast

blue BB salt (blue reaction product) and peroxidase with amino ethyl

carbazole (red reaction product; for details see Haider et al., 2011).

Double staining for fluorescent microscopy was done in a compar-

able way except fluorophore-coupled secondary antibodies were used

(Cy2, DyLight488, Cy3 or Alexa 546 and 448). The signal of p22phox

was enhanced by incubation with biotinylated secondary antibody fol-

lowed by incubation with streptavidin coupled to the respective fluor-

ophore. Fluorescent preparations were examined using a Leica SP2

confocal scan microscope.

Quantitative analysis
Expression levels of p22phox and gp91phox in different lesion areas

and the normal appearing white matter were determined by densitom-

etry, as described in detail (Haider et al., 2011). In short, different

lesion areas and normal-appearing white matter were defined on sec-

tions stained with Luxol fast blue and for microglia activation (Iba-1

immunoreactivity). From each different multiple sclerosis or control

case, 8–34 images (0.61 � 0.46 mm in size) were scanned and

stored as JPEG files. The images were processed with Adobe

Photoshop CS2 by setting a threshold level (output level = 128) and

pixels above this level were deleted. Per cent areas, covered by the

signal, were measured with ImageJ. Averages for individual densito-

metric values were calculated per lesion area per case and the aver-

ages compared between different multiple sclerosis lesion areas and

control white matter.

Table 1 Antibodies used for immunocytochemistry

Primary antibody Antibody type Target Dilution Pretreatment Source

NOX1 Rabbit (pAB) NADPH-Oxidase subunit 1:200 EDTA pH 9 Sigma-Aldrich, SAB 4200097

gp91phox Mouse (mAB) NADPH-Oxidase subunit 1:100 Citrate pH6 Verhoeven et al., 1989

p22phox Rabbit (pAB) NADPH-Oxidase subunit 1:100 Citrate pH6 Santa Cruz, sc-20781

NOXO1 Rabbit (pAB) NADPH-Oxidase subunit 1:200 Citrate pH6 Sigma-Aldrich, SAB 2900367

p47phox Goat (pAB) NADPH-Oxidase subunit 1:100 Citrate pH6 Abcam, ab 74095 and Lifespan Biosci, LS-B2365

GFAP Mouse (mAB) NADPH-Oxidase subunit 1:200 Citrate pH6 Thermo Scientific, USA; MS1376

CD68 Mouse (mAB) Macrophages, microglia 1:100 EDTA pH 9 Dako, M0814

IBA-1 Rabbit (pAB) Microglia 1:3000 EDTA pH9 WAKO Chemicals, 019-19741

LN3 Mouse (mAB) MHCII 1:50 Citrate pH6 Dako
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Western blot analysis
To assess the protein expression of various key NADPH oxidase sub-

units, we selected three multiple sclerosis lesion blocks containing

active demyelinated lesions and three white matter samples from

non-neurological controls. First, two frozen sections were stained for

proteolipid protein and MHC-II, to select the active demyelinating

areas, which were subsequently outlined with a scalpel on the tissue

block. After cutting 50-mm sections, outlined areas were collected

(�40–60 mg) and tissue samples were homogenized by incubating

the samples with M-PER� buffer (Thermo Scientific) with protease

and phosphatase inhibitors (Roche diagnostics GmbH) on ice for

30 min and passing the samples 10 times through an 0.8 mm2

needle (Terumo). Protein concentrations were measured using BCA

protein assay (Thermo Scientific) and equal amounts of protein were

separated on 10% sodium dodecyl sulphate–polyacrylamide gel elec-

trophoresis gels and transferred to PVDF membranes (Bio-Rad

Laboratories). After blocking in Odyssey� blocking buffer (LI-COR

Biosciences), membranes were incubated with either anti-gp91phox

(1:200), p22phox (1:200) or Nox1 (1:1000) overnight in Odyssey�

blocking buffer at 4�C. Primary antibodies were detected by incuba-

tion with appropriate IRDye� secondary antibodies (LI-COR

Biosciences) for 1 h at room temperature in Odyssey� blocking

buffer and quantified using the Odyssey� infrared imaging system

(LI-COR Biosciences). Actin quantification was used to correct for

total protein loading variation. GraphPad Prism software was used

for statistical analyses and Student’s t-test was used to compare dif-

ferences among the control and multiple sclerosis samples with the

control group as a reference point. Results were considered significant

when P5 0.05.

Statistical analysis
Due to the uneven distribution of the histological data, statistical ana-

lysis was performed with non-parametric tests. Descriptive analysis

included median value and range. Differences between two groups

were assessed with Wilcoxon–Mann–Whitney U-test. Differences be-

tween more than two groups were assessed with Kruskal–Wallis test,

followed by pair-wise Wilcoxon–Mann–Whitney U-tests. In case of

multiple testing (comparison of more than two groups), significant

values were corrected with Bonferroni procedure. Interdependence

of variables was evaluated by Spearman non-parametric correlation

test. The reported P-values are results of two-sided tests. A P5 0.05

is considered statistically significant. For all statistical analysis, mean

values per patient for each lesion type and normal-appearing white

matter were used.

Results
Pathological alterations in the brain of patients with multiple scler-

osis are complex and differ between stages of the disease (relap-

sing versus progressive) or activity of the disease process (Frischer

et al., 2009; Lassmann 2011). Active lesions consist of the classical

acute or chronic active lesions, which are characterized by inflam-

mation, blood–brain barrier injury and rapidly developing demye-

lination and tissue injury. They are most frequently seen in patients

with acute or relapsing/remitting multiple sclerosis. In contrast,

besides diffuse injury in the normal appearing white and grey

matter, the brain of patients with progressive disease contain

mainly inactive lesions or slowly expanding active lesions

(Kutzelnigg et al., 2005). The latter are characterized by an in-

active lesion centre surrounded by a margin with microglia activa-

tion, few macrophages with early myelin degradation products

and some acute axonal injury (Frischer et al., 2009). In addition,

both classical active lesions, and to a lesser extent, slowly expand-

ing lesions are surrounded by a zone of microglia activation asso-

ciated with initial stages of tissue injury (Lassmann, 2011), called

the initial (Marik et al., 2007) or the ‘pre-phagocytic’ lesion stage

(Barnett and Prineas, 2004). Since we recently provided evidence

for oxidative tissue injury in active multiple sclerosis lesions (Haider

et al., 2011), we focused here on the origin of reactive oxygen

species and reactive nitrogen species in the early stages of multiple

sclerosis lesion development. In a first step, we analysed mito-

chondrial genes and those that are involved in oxidative stress,

to obtain a global view on their expression patterns in different

stages of active lesions in three cases of fulminant acute multiple

sclerosis in comparison to controls. In a second step, we concen-

trated on protein subunits of the NADPH complexes by immuno-

cytochemistry in a large sample of different multiple sclerosis

lesion types and disease stages.

Microarray studies
The raw data on gene expression in different types of multiple

sclerosis lesions are deposited in the Gene Expression Omnibus

data repository (http://www.ncbi.nlm.nih.gov/geo/query/acc

.cgi?acc=GSE32915). As potential sources for reactive oxygen

species and the respective tissue reaction, we focused in our pre-

sent analysis on mitochondrial genes and genes that are known to

be involved in redox homoeostasis, such as oxidative burst, and in

anti-oxidative defence. Highly up- or downregulated genes in

comparison to controls were mainly seen in initial lesions and

much less in established demyelinated lesions or normal-appearing

white matter (Table 2).

Mitochondrial genes

Mitochondrial genes were highly enriched in the cohort of top-

regulated genes (43-fold; log2) in multiple sclerosis lesions and

the most pronounced changes were seen in initial lesion areas.

Downregulated expression was seen in 48 genes and upregulated

expression in 18 genes (Table 2).

All mitochondrial DNA-encoded genes that were included in the

arrays (ND1, ND2, ND3, ND5, ND6, COX1, CYTB) were down-

regulated in initial multiple sclerosis lesions (Table 3). A similar pat-

tern was seen for nuclear-encoded genes of the respiratory chain,

with marked downregulation of genes coding for complex I, and

complex IV (Table 3). Regarding other mitochondria-related genes

with expression changes of 43-fold (log2), again downregulation

was seen in the majority (n = 31), whereas only 16 showed upre-

gulated expression (Table 3). The latter included genes involved in

mitochondrial protein synthesis (MRPL18, 14, 23; MRPS15, 22),

adenine nucleotide translocation (SLC25A4), which are induced by

oxidative stress and are also involved in oxidative stress defence

(UCP3, GRPEL1, TXNRD2, ISCU, AASS, ACADL, DMGDH and

ACADS).
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Genes involved in radical production and response to
oxidative stress

As seen for the above described mitochondrial genes, most pro-

nounced changes in the expression of genes involved in the pro-

duction of reactive oxygen and nitrogen species were seen in

initial lesions, followed by demyelinated lesion areas and

normal-appearing white matter (Table 2). The most pronounced

changes were found for inducible (NOS2A) and endothelial

(NOS3) nitric oxide synthases and for subunits of the NADPH

oxidase complex 2 (CYBA, CYBB and NCF1; Table 4). In addition,

we also found enhanced expression of the reactive oxygen

species-generating enzymes MPO, eosinophil peroxidase (EPX)

and lactoperoxidase (LPO), but not for xanthine oxidase (XDH).

While the expression of genes involved in the production of re-

active oxygen species were highly upregulated, expression of nitric

oxide synthase genes was reduced compared with controls. In

addition to genes involved in the production of reactive oxygen

and nitrogen species, we found changes in the expression of genes

involved in free radical detoxification, including glutathione

peroxidases and peroxiredoxins (Table 4). These findings further

support the concept of oxidative stress as a major pathogenic

factor in initial multiple sclerosis lesions (Lassmann and van

Horssen, 2011).

Difference in gene expression between different cases
in relation to lesion activity

All three cases included in this microarray analysis fulfilled the

criteria of highly active acute multiple sclerosis and care was

taken to select comparable lesion stages from the material by

tissue microdissection. Despite these precautions, differences in

gene expression were seen between the cases (Fig. 1). The most

marked changes in gene expression were seen in Case 270, a

patient with fulminant multiple sclerosis and disease duration of

2 weeks only. Intermediate changes were present in Case 144,

who died within 4 months after disease onset and presented

with a rapidly enlarging white matter lesion with concentric de-

myelination. Both of these cases showed, besides demyelinated

lesions with massive macrophage infiltration, large areas of initial

Table 3 Gene expression for molecules involved in mitochondrial function in initial (‘pre-phagocytic’) multiple sclerosis
lesions: top-regulated genes (43 log2-fold)

Downregulated Upregulated

Respiratory chain genes Complex I Complex 1

ND1, ND2, ND3, ND5, ND6, NDUFB10
NDUFA3, NDUFA4, NDUFA8, NDUFB2.
NDUFB8NDUFS5,

Complex III

CYTB,

UQCRQ

Complex IV SURF1

COX1,

COX6A1, COX6B1, COX7A2

Other genes ACADVL, MRPS24, PTRH2, FXN, ACSM2B,
SLC25A17, MRPL16, BCL2L1, PRDX3, ALDH18A1,
FDXR, CPT1B, s75896, AW46717, APEX2, CLPP,
CYP11A1, MRPL28, HTRA2, TUFM, FXC1, ENDOG,
MRPS18B, ARG2, CASQ1, AF086790, NT5M,
ALDH4A1, GFM2, s81524, MRPS25

UCP3, GRPEL1, AASS, MRPL18, ACADL, LOC28521,
MRPS15, MRPL23, SLC25A4, TXNRD2, ISCU,
MRPS22, CS, DMGDH, MRPL14, ACADS

This table shows those genes encoding for mitochondrial proteins, which were up- or downregulated (43 log2-fold) in initial multiple sclerosis lesions compared with
controls. Mitochondrial DNA-encoded genes are shown in bold; gene abbreviations and function can be found at www.ihop-net.org and www.sigmaaldrich.com/

customer-services/services/basic-research.html.

Table 2 Top-regulated mitochondrial genes and genes related to oxidative tissue injury in different stages of active multiple
sclerosis lesions (average values per lesion category)

Mitochondrial
genes,
normal-appearing
white matter

Oxidative stress
genes,
normal-appearing
white matter

Mitochondrial
genes,
initial lesion

Oxidative stress
genes,
initial lesion

Mitochondrial
genes,
early demyelinated
lesions

Oxidative stress,
early demyelinated
lesion

Downregulated 7/19 0/1 48/55 7/12 11/21 0/5

Upregulated 2/4 0/1 18/22 5/9 1/9 0/2

From the global microarray data, we analysed how many genes encoding for mitochondrial proteins showed expression changes (up- or downregulated) of 43 log2-fold
(bold) or 42 log2-fold.
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‘pre-phagocytic’ lesions (Fig. 1). Only moderate changes in gene

expression were seen in Case 403, who died with acute multiple

sclerosis with a clinical duration of 1.5 months. The respective

section analysed in our study contained large demyelinated pla-

ques with densely packed macrophages with early myelin debris,

but showed only a very small rim of initial ‘pre-phagocytic’ lesion

area around the plaque. These data suggest a very tight regulation

of the expression of molecules involved in oxidative stress, closely

depending upon the state of activity of the lesion.

Immunocytochemistry for oxidative
burst molecules in multiple sclerosis
lesions
Expression of mitochondrial proteins in different types and stages

of multiple sclerosis lesions has been extensively described (Lu

et al., 2000; Dutta et al., 2006; Mahad 2008a, b, 2009; Witte

et al., 2009, 2010) and these data were in part obtained from

sections from the same blocks and patients as those used for

microarray analysis in this study (Mahad et al., 2008). In addition,

we and others have previously shown the expression of inducible

nitric oxide synthase (iNOS) and MPO in active multiple sclerosis

lesions (Cross et al., 1998; Liu et al., 2001; Marik et al., 2007;

Gray et al., 2008a, b; Zeis et al., 2009). So far, however, data on

the protein expression of molecules involved in oxidative burst in

multiple sclerosis lesions are not available. We therefore analysed

the expression of several components of the NADPH oxidase

(Nox) complexes.

Nox2 complex

The Nox2 complex is composed of two transmembrane proteins:

p22phox (reflected by CYBB in the gene expression arrays) and

gp91phox (CYBA) and requires, for functional activation, the as-

sociation with p47phox (NCF1) as a regulatory subunit, together

with p67phox (NCF2) and p40phox (NCF4; Bedard and Krause,

2007). We have therefore analysed the expression of p22phox

and gp91phox, as well as p47phox, as a representative of the

regulatory elements in lesions and normal-appearing white

matter of patients with multiple sclerosis (Figs 1 and 2) and

age-matched controls (Supplementary Fig. 1A–E). The proteins

p22phox and gp91phox showed very similar expression patterns

in patients with multiple sclerosis and controls. In general, both

proteins are expressed in microglia cells and macrophages (Table

5), revealing a staining pattern that is similar to that seen with the

pan-microglia marker Iba-1. In the white matter of controls

(Supplementary Fig. 1A and B) and in the normal-appearing

white matter of patients with multiple sclerosis, a moderate dens-

ity of p22phox- and gp91phox-positive microglia was seen, and

these molecules were strongly expressed in microglia nodules

when present in multiple sclerosis brains (Fig. 2d and e). At the

lesion edge, in particular in areas of initial (‘pre-phagocytic’) le-

sions, the expression of p22 and gp91phox was intense, due to

the marked increase in microglia density and increased expression

of these molecules in individual cells (Fig. 2dd and ee). In the

demyelinated regions, macrophages that had taken up myelin

debris expressed p22phox and gp91phox, albeit to a lesser

extent than the initial lesion area (Fig. 2c, ddd and eee). In con-

trast, the expression pattern of p47phox (NCF1) was more re-

stricted. In control white matter, few perivascular macrophages

were stained (Supplementary Fig. 1C). In multiple sclerosis lesions,

we found p47phox expression in 5–20% of macrophages and

activated microglia and this was predominantly localized in areas

of initial tissue damage at the edge of actively demyelinating le-

sions [‘pre-phagocytic’ lesion areas; (Fig. 2f–fff)].

The quantitative analysis of p22phox expression by densitom-

etry revealed additional insights (Fig. 3a). In classical active lesions

from early multiple sclerosis, expression in the lesions was very

high but in the surrounding normal-appearing white matter, it

was similar to that seen in normal control white matter. In con-

trast, in slowly expanding lesions, p22phox expression in the

Table 4 Expression of genes related to reactive oxygen species production and oxidative defence as well as genes induced
by oxidative stress in initial multiple sclerosis lesions (42 log2-fold changed expression values in at least one of three
patients)

Upregulated Downregulated

Reactive oxygen species production CYBA, CYBB, NCF1 MPO, EPX, PTGS1, PXDN NOS1, NOS2A, NOS3, NOX5, MIOX, RAC1,
RAC3,

Reactive oxygen species detoxification GPX4, PRDX1, 2, 4 GPX3, GPX5, PRDX3

Induced by reactive oxygen species ALOX12, ATOX1, EPHX2, GPR156, MSRA,
STK25, OSGIN, GLRX2, PRG3, SEPP1, SGK2,
TXNRD2

APOE, CYGB, PNKP, SCARA3, SFTPD, SIRT2,
SRXN1

This table lists genes that are involved in production or detoxification of reactive oxygen species or are induced by oxidative stress and are up- or downregulated (42 log2-
fold) in initial multiple sclerosis lesions. Gene abbreviations and function can be found at www.ihop-net.org and www.sigmaaldrich.com/customer-services/services/basic-
research.htlm.

Table 5 Expression of NADPH subunits in microglia and
astrocytes (confocal microscopy double staining)

p22phox gp91phox p47phox NOX1 NOXO1

Microglia (Iba1
or CD68)

+ + + + +

Astrocytes (GFAP) � � � + +

Immunofluorescence was performed by double staining with markers for NADPH
oxidase subunits and for microglia (Iba1 and CD68) or astrocytes (GFAP). Stained
sections were analysed by confocal laser microscopy as shown in Fig. 2.

GFAP = glial fibrillary acidic protein.
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Figure 2 (a–c) Active lesion in a patient with primary progressive multiple sclerosis. (a) Luxol fast blue (LFB) myelin staining shows a

demyelinated lesion with defined borders. (b) In the adjacent section stained for p22phox intense expression is seen at the active lesion

edge, spanning into the adjacent normal appearing white matter (initial lesion area). (c) In the inactive centre of the lesion p22phox is

weakly expressed in some macrophages. [d–h(hh)] These images show the expression of oxidative burst associated molecules in the

normal appearing white matter (left column), in the zone of initial tissue injury (centre column) and in the demyelinated zone (right

column). Most pronounced expression of all proteins is seen in the initial lesion area (centre panel), while expression for p22phox and

gp91phox is much weaker in lipid containing macrophages in the lesion centre (right panel). In the normal appearing white matter

microglia nodules can be seen, which are intensely stained for p22phox, gp91phox and NOX1. P22phox, gp91phox and p47phox are only

expressed in macrophages and microglia (see below), while Nox1 shows a broader expression also in astrocytes (asterisk in gg) and

endothelial cells (asterisk labels the vessel with endothelial staining); the expression of Noxo1 is even broader compared with that of Nox1.

P47phox staining is absent in the normal appearing white matter (g), while intense expression is seen in macrophages and small microglia

NADPH oxidase in active multiple sclerosis lesions Brain 2012: 135; 886–899 | 893
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active lesion parts was, as expected, lower than in classical active

lesions and this reflects the lower/milder degree of active tissue

injury. Finally, p22phox expression was low in the centre of in-

active lesions, reflecting reduced microglia density in these areas

compared with normal white matter (Lassmann, 2011). A similar

expression pattern was seen with the gp91phox antibody, result-

ing in a significant correlation between p22phox and gp91phox

expression (Fig. 3b).

Figure 2 Continued
like cells; the insert shows expression of p47phox (red) in macrophages stained with LN3 (green). In the lesion centre, only weak reactivity

for p47phox is seen, mainly in perivascular macrophages (at higher magnification in the inset). (l–o) Confocal laser microscope images of

double staining with different Nox markers and CNS cell-specific markers; the staining combinations are indicated on the figures. These

data show co-localization of different Nox components within the same macrophages or microglia cells in the multiple sclerosis lesions.

Nox 1 is also expressed in GFAP-positive astrocytes (n) in the absence of p22phox (o). Red and green staining depicts the individual

antigens as indicated in the figure; yellow staining represents double staining.

Figure 3 (a) Quantitative analysis of p22phox expression in different types of multiple sclerosis lesions. Compared with control white

matter, there is a significantly higher expression (P50.01) in classical active (CAL) and slowly expanding multiple sclerosis lesions (SEL),

and in the normal-appearing white matter (NWM) of slowly expanding lesions; in the lesions p22phox-positive microglia are mainly seen

in the active lesion edge (initial lesions, IL) and less in the inactive lesion centre. Furthermore, we found a significant decrease of p22

expressing microglia in the centre of inactive lesions. (b) Correlation between p22 and gp91 expression in different multiple sclerosis cases

and lesions. The same areas of normal-appearing white matter and lesions were scanned for p22phox and gp91phox expression and

regression was analysed as described in the ‘Material and methods’ section. (c) Comparison between p22phox expression, determined by

densitometry and the number of nuclei with oxidized DNA (8OHdG immunoreactivity) within multiple sclerosis lesions. (d) Comparison

between p22phox expression and the number of dystrophic axons, immunoreactive for oxidized phospholipids (E06); p22phox and

gp91phox immunoreactivity was determined by densitometry; nuclei with oxidized DNA and dystrophic axons, positive for E06 were

counted manually (Haider et al., 2011). *P50.05; **P50.01.
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The significantly increased expression of proteins of the Nox2

and Nox1 complexes in multiple sclerosis lesions compared with

control white matter was also confirmed by western blot analysis,

performed in an independent set of samples (Amsterdam material;

Fig. 4).

The expression of p22phox, seen in different types of multiple

sclerosis lesions, in general co-localized in the same areas with the

presence of oxidized DNA and lipids (Fig. 3c and d), described in

detail previously (Haider et al., 2011). In addition, we found a

significant correlation between the extent of p22phox expression

with the number of dystrophic axons immunoreactive for amyloid

precursor protein (R = 0.47; P50.001) and oxidized phospholipids

(R = 0.35; P50.006; Fig. 3d), with the number of CD3 + T cells

(R = 0.55; P5 0.001) and the number of HLA-DR + microglia cells

and macrophages (R = 0.69; P50.001). The values for inflamma-

tory cells, dystrophic axons and oxidized DNA and lipids have

been determined in previous studies on the same material

used in the present study (Frischer et al., 2009; Haider et al.,

2011). We did not find significant differences of p22phox expres-

sion with regard to gender. There was, however, a significant

decrease of p22phox expression with disease duration (R = 0.18;

P5 0.021). Patients with acute or relapsing–remitting multiple

sclerosis showed significantly more lesional p22phox expression

than patients who died during the progressive stage of the dis-

ease (primary and secondary progressive multiple sclerosis;

P5 0.012).

A more detailed analysis of p22phox expression in rela-

tion to inflammation showed the presence of T cells (mainly

CD8 + cells) associated with intense p22phox expression in

microglia and macrophages (Supplementary Fig. 1). This was

seen even in microglia nodules in the normal-appearing

white matter (Supplementary Fig. 1). In double staining at

the level of individual cells, we did not find co-localization

of p22phox with T cell markers (CD3, CD8); however,

p22phox was expressed in a subset of CD20 + B-lymphocytes

(Supplementary Fig. 1).

Nox1 complex

The Nox1 complex contains two transmembrane proteins

(p22phox and Nox1), as well as cytoplasmic regulatory molecules

(Noxo1 and Noxa1: Bedard and Krause 2007; Cheret et al., 2008).

The expression patterns of Nox1 and Noxo1 were different from

those of the Nox2 complex (Table 5). In 9 out of 16 controls,

Nox1 was weakly expressed in some microglia, astrocytes and

endothelial cells (Supplementary Fig. 1), while no staining was

seen in the others. Weak Noxo1 expression was detected in

microglia in controls (Supplementary Fig. 1e). In multiple sclerosis

lesions, Nox1 and Noxo1 expression were mainly seen in and

around active plaques of acute and relapsing multiple sclerosis

(Fig. 2g and h). There, Nox1 was not only present in macrophages

and microglia, but also in astrocytes and endothelial cells [Fig. 2g–

g(gg)]. Expression was not restricted to initial (‘pre-phagocytic’)

areas but more generally throughout the plaque area and the

adjacent normal-appearing white matter, where it was also

found in microglia nodules (Fig. 2g). In slowly expanding lesions,

some Nox1 staining was found in microglia, macrophages, astro-

cytes and endothelial cells at the active lesion edge and in the

adjacent normal-appearing white matter. Overall, Noxo1 immu-

noreactivity was weak and mainly present in initial lesions. Its ex-

pression was more diffuse, but accentuated in microglia and

macrophages. Immunoreactivity in inactive lesions was similar to

that seen in controls.

Co-localization of Nox subunits in
multiple sclerosis lesions suggests
functionally active oxidative burst
Superoxide generation through Nox molecules requires function-

ally assembled subunits. Therefore, we performed double labelling

with confocal laser microscopy to test for co-localization of the

respective molecules in the same cells (Fig. 2i–o). In macrophages

and microglia, we identified co-localization of all the tested com-

ponents of the Nox1 and Nox2 complexes. This was, however,

Figure 4 (a) Western blot of three control samples (Lanes 1–3) and three multiple sclerosis samples (Lanes 4–6) demonstrating enhanced

protein expression of NOX1, p22phox and gp91phox in active demyelinating multiple sclerosis lesions compared with white matter from

non-neurological controls. (b) Quantitative densitometry of the blots reveals significantly increased expression levels for NOX1, gp91phox

and p22phox in multiple sclerosis lesions compared with control white matter. *P.
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not the case for Nox1 complex expression in astrocytes and endo-

thelial cells. In these cells, no convincing expression of p22phox

was seen (Fig. 2o).

Discussion
Our current results expand previous observations that suggest a

prominent role of oxidative injury in the pathogenesis of demye-

lination and tissue injury in multiple sclerosis (Basagra et al., 1995;

Vladimirova et al., 1998; Smith et al., 1999; Smith and Lassmann

2002; Bizzozero et al., 2005; van Horssen et al., 2011). In a recent

study, we found that oxidized DNA and lipids are present in high

amounts in active multiple sclerosis lesions, in particular at sites of

initial tissue injury. Furthermore, the presence of oxidized epitopes

was enriched in apoptotic oligodendrocytes and in acutely injured

dystrophic axons (Haider et al., 2011). The prominent upregula-

tion of gene expression of molecules induced by oxidative stress or

involved in redox homoeostasis, as seen in our current study, pro-

vides additional support for the contribution of reactive oxygen

species in the pathogenesis of early multiple sclerosis.

Reactive oxygen species production is accomplished by two

principally different mechanisms: activation of free radical-

producing enzymes, such as those involved in oxidative burst,

and by mitochondrial dysfunction (Van Horssen et al., 2010;

Smith 2011; Witte et al., 2011). Support for both mechanisms

comes from our microarray study since we found marked changes

in the expression of mitochondrial genes and, in particular, of

those encoded by mitochondrial DNA. The present results are in

line with previous biochemical, histochemical and immunocyto-

chemical studies that showed an impairment of mitochondrial

function in active multiple sclerosis lesions, which appears to be

related to active degeneration of myelin, oligodendrocytes, axons

and neurons (Mahad et al., 2008a). Mitochondrial dysfunction is

transient, as seen in the comparison of initial lesion areas, with

demyelinated lesion areas in our arrays. At later stages of lesion

formation mitochondrial numbers and enzyme activity increase,

apparently reflecting the increased metabolic demand of demyeli-

nated axons in the lesions or a reaction to chronic mitochondrial

insult (Mahad et al., 2009; Witte et al., 2009). Taken together, it

is therefore likely that dysfunction of mitochondria contributes to

reactive oxygen species production within multiple sclerosis le-

sions. It is, however, unlikely that this phenomenon is responsible

for the initial stage of mitochondrial dysfunction in the lesions.

Our microarray data, in combination with the immunohisto-

chemical results, identify activated macrophages and microglia as

the major source of reactive oxygen species production in initial

multiple sclerosis lesions. We demonstrate increased expression of

the major components of the Nox2 and Nox1 complexes in active

multiple sclerosis lesions, predominantly in areas of initial ‘pre-pha-

gocytic’ tissue injury, as defined by Barnett and Prineas (2004),

Marik et al. (2007) and Henderson et al. (2009). This is the area

of active multiple sclerosis lesions, where myelin sheaths are still

preserved, but distal oligodendrogliopathy, oligodendrocyte apop-

tosis and acute axonal injury take place in association with mild

T cell infiltrates and microglia activation (Lucchinetti et al., 2000;

Barnett and Prineas, 2004; Marik et al., 2007; Lassmann 2011).

Furthermore, cells containing oxidized DNA and oxidized lipids are

mainly concentrated at these sites (Haider et al., 2011) and the

most pronounced damage to mitochondria in oligodendrocytes

and axons is seen in this area (Mahad et al., 2008a).

Experimental studies suggest that oxidative tissue damage under

these conditions is most likely mediated by peroxynitrite.

Nitrotyrosine expression, a footprint of peroxynitrite-induced

injury, has been found at the edge of active multiple sclerosis

lesions (Zeis et al., 2009) and is known to mediate oligodendro-

cyte injury in vitro and in autoimmune encephalomyelitis in vivo

(Li et al., 2005, 2011; Nikic et al., 2011; Vana et al., 2011). Our

present data strongly suggest that reactive oxygen species, which

are also necessary for peroxynitrite formation, are mainly pro-

duced by activated microglia through classical Nox2-dependent

oxidative burst. This view is supported by several observations.

First, p22phox and gp91phox are more abundantly expressed in

active multiple sclerosis lesions compared with other oxidases, such

as MPO (see arrays and Marik et al., 2007; Gray et al., 2008a, b).

Secondly, the co-expression of different components of the Nox2

complex in the same microglia cells indicates that these complexes

are functionally active. Thirdly, it is interesting to note that

p22phox and gp91phox expression are less intense in macro-

phages that have taken up myelin debris in comparison to micro-

glia in the initial lesion zone. This observation supports the concept

that myelin phagocytosis deactivates macrophages from a

pro-inflammatory to an anti-inflammatory phenotype within mul-

tiple sclerosis lesions. Potential functional importance of Nox2

complexes in inflammatory demyelinating brain lesions is shown

by the protective effect of gp91phox gene deletion in animals with

autoimmune encephalomyelitis (Li et al., 2011). Furthermore,

Nox2 attenuation, by either genetic knockdown or pharmaco-

logical compounds, is beneficial in animal models for neurodegen-

eration. Nox2 deficiency reduced oxidative stress and improved

the outcome in a mouse model of Alzheimer’s disease (Park

et al., 2008), and neurodegeneration was markedly attenuated

in an experimental animal model of Parkinson’s disease compared

with wild-type animals (Zhang et al., 2004).

In contrast, little is known about the role of the Nox1 complex

in multiple sclerosis and experimental brain inflammation. In vitro,

microglia toxicity is, in part, mediated through reactive oxygen

species production by the Nox1 complex (Cheret et al., 2008).

In addition, Nox1 expression was not restricted to macrophages

and microglia, where p22phox is present for potential interaction.

In astrocytes and endothelial cells, Nox1 was present in the ab-

sence of detectable p22phox. Whether astrocytic and endothelial

Nox1 are also able to produce reactive oxygen species in the ab-

sence of p22phox or whether they serve other functions in these

cells warrants future studies.

Despite the use of formaldehyde-fixed paraffin-embedded ma-

terial, we found a good correspondence between the gene expres-

sion data obtained in microarrays and the respective

immunohistochemical results. This was not only the case for the

changes in relation to oxidative burst molecules, which were dir-

ectly analysed here, but also for those related to mitochondrial

function, where respective immunocytochemical analysis has

been performed previously on the same material (Mahad et al.,

2008a). It has been shown before that transcriptome analysis can
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be done on paraffin-embedded material (von Weizsäcker et al.,

1991; Lewis et al., 2001; Waddell et al., 2010) and we show that

this is even feasible on archival autopsy material from patients

with multiple sclerosis. This is important since acute multiple scler-

osis lesions are rare in pathological collections and so far not avail-

able in native frozen tissue blocks. There were, however, a

number of exceptions and caveats. First, some messenger RNAs,

such as iNOS, were downregulated in the arrays, despite increased

protein expression seen in immunocytochemistry (Marik et al.,

2007). In the normal white matter of the human brain, a low

number of iNOS-positive microglia cells is present (Marik et al.,

2007), which may reflect some basic activation of microglia in the

human brain in comparison to animals, housed under specific

pathogen-free conditions. This may explain the moderate basic

level of iNOS messenger RNA expression in controls seen in our

microarrays. Since iNOS messenger RNA expression after cytokine

stimulation is transient due to its instability and to active regulation

by the presence of nitric oxide (Park et al., 1997; Murphy, 2000),

downregulation in the active multiple sclerosis lesions may not

be unexpected. Secondly, one-third of the 33 000 genes analysed

showed very low expression levels, which also showed no changes

between cases or between patients with multiple sclerosis and

controls. These values had to be excluded from the analysis due

to insufficient RNA quantity. This is a technical limit of gene ex-

pression studies in archival, formaldehyde-fixed and paraffin-

embedded tissue material, having a much lower sensitivity com-

pared with those performed on native frozen tissue (Waddell

et al., 2010) and where the gene sequences utilized for detection

have to be located close to the poly(A) tail of the gene (see

‘Material and methods’ section). Finally, closer inspection of the

data showed differences between the cases. As discussed above,

these differences may best be explained by the complexity of

lesion architecture and more subtle differences in the stage of

the respective lesions (Lassmann, 2011). These data suggest that

in a disease such as multiple sclerosis, transcriptome or proteome

analysis should not be performed by simply comparing active with

inactive lesions or control white matter, using standard criteria for

lesion definition. What is needed for this type of research in the

future is highly precise area selection and micro-dissection, similar

but possibly even better than that carried out in our current study.

However, our current study shows that additional important infor-

mation can be obtained from such microarrays, when these pre-

cautions are considered.

One can argue that the brain samples selected for gene expres-

sion analysis in our study are not derived from typical multiple

sclerosis cases. In fact, all three were from patients with acute

multiple sclerosis and one showed prominent concentric demyelin-

ation, typical for Balo’s disease. There are, however, two main

arguments that support our view that the changes seen in these

cases are representative of more classical multiple sclerosis lesions.

First, the same changes, although in lower severity, were seen by

immunocytochemistry in all other active multiple sclerosis lesions,

including the slowly expanding lesions of progressive multiple

sclerosis. Secondly, it has been shown previously that those

tissue alterations characteristic for pattern III lesions, including

elements of concentric sclerosis, are seen to a lesser extent in

other classical active lesions from patients with relapsing or

progressive multiple sclerosis (Barnett and Prineas, 2004; Marik

et al., 2007).

In conclusion, our data provide further evidence for the import-

ance of oxidative damage in the pathogenesis of demyelination

and tissue injury in multiple sclerosis. We suggest that tissue

damage is initiated by oxidative burst in activated microglia and

macrophages, which is most likely induced by the inflammatory

process. Oxidative damage leads to mitochondrial injury and dis-

turbance of the mitochondrial respiratory chain, which not only

results in energy deficiency but also in further propagation of re-

active oxygen species production (Lassmann and van Horssen,

2011; Smith, 2011). Neuroprotective therapies, specifically focus-

ing on the prevention of oxidative damage may, thus, become

attractive in the future, and a current trial testing the effect of

fumarates, which boost endogenous antioxidant enzymes in pa-

tients with multiple sclerosis, represents one possible example for

this approach (Schreibelt et al., 2007; de Vries et al., 2008; Linker

et al., 2011). However, experimental data have shown that react-

ive nitrogen species, as well as reactive oxygen species can, under

certain circumstances also mediate beneficial, anti-inflammatory

effects in autoimmune encephalomyelitis (Sahrbacher et al.,

1998; Becanovic et al., 2006; Liu et al., 2006; Willenborg et al.,

2007), possibly by repressing the T cell-mediated immune re-

sponse. On this basis, stimulation of reactive oxygen species pro-

duction has been suggested as a potential therapy for patients

with multiple sclerosis (Becanovic et al., 2006). In light of our

current observations such therapeutic trials should be met with

caution.
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